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Kinematic Analysis of the Multi-Link Five-Point Suspension 
System in Point Coordinates 

H a z e m  A l i  A t t i a *  

Department o f  Mathematics, College o f  Science, King Saud University ( Al-Qasseem Branch), 
P.O. Boa" 237, Buraidah 81999, KSA 

In this paper, a numerical algorithm for the kinematic analysis of a multi link five point 

suspension system is presented. The kinematic analysis is carried out in terms of the rectangular 

Cartesian coordinates of some defined points in the links and at the joints. Geometric constraints 

are introduced to fix the relative positions between the points belonging to the same rigid body. 

Position, velocity and acceleration analyses are carried out. The presented formulation in terms 

of this system of coordinates is simple and involves only elementary mathematics. The results of 

the kinematic analysis are presented and discussed. 
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I .  I n t r o d u c t i o n  

In recent years various methods for the kine- 

matic analysis of spatial mechanisms have been 

developed. The different methods can be classified 

according to the type of coordinates chosen to 

determine their configuration and specify their 

constraints. Some tbrmulations use a large set of 

absolute coordinates (Wehage and Haug, 1982, 

Nikravesh, 1988). The position and orientation of 

the rigid links in the mechanism are described 

with respect to the global reference coordinate 

system. The algebraic equations of constraints are 

introduced to represent the kinematic joints that 

connect the rigid bodies. Although in this type of 

formulation the constraint equations are easy to 

construct, it has the disadvantage of the large 

number of defined coordinates. Other lbrmula- 

tions use sets of relative coordinates (Denavit and 

Hartenberg, 1955: Paul and Krajcinovic, 1970). 
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The position of each link is defined with respect 

to the previous link by means of relative joint 

coordinates that depend on the type of the joint 

used. This type of formulation yields the cons- 

traints as a minimal set of algebraic equations. 

The constraint equations are derived based on 

loop closure equations and the resulting con- 

straint equations are highly nonlinear and contain 

complex circular functions. 

Another tbrmulation which is based on point 

coordinates is discussed in (Garcia de Jalon et al., 

1981, 1982; Vilallong et al., 1984; Akhras and 

Angeles, 1990 : Attia, 1993). The configuration of 

the system is described in terms of the rectangular 

Cartesian coordinates of some defined points in 

the links and at the joints. The system constraint 

equations are then written to fix the relative 

positions of the points in each rigid link and also 

the relative positions between the different links 

determined by the type of joints connecting them. 

In this paper the kinematic analysis of the 

multi-link five-point suspension system is carried 

out in terms of point coordinates. The position, 

velocity, and acceleration analyses are carried out 

to determine the positions, velocities, and acce- 

lerations for the unknown points and links in the 

mechanism. The velocities and accelerations of 
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other points of interest can also be calculated. The 

angular  velocity and acceleration of any link in 

the mechanism are evaluated in terms of the Car- 

tesian coordinates,  velocities, and accelerations of 

the assigned points. 

2. Modelling of the Multi-Link 
Five-Point Suspension System 

The mul t i - l ink  f ive-point  suspension system 

is usually used for rear driven axles of current 

productions of Mercedes-Benz cars, Mazda 929, 

some BMW and Toyota Supra cars. The mechani-  

cal system consists of  the main chassis, a mul t i -  

link f ive-point  suspension mechanism, and the 

wheel as shown in Fig. I. The system has three 

degrees of freedom (DOF) .  The chassis, since it is 

constrained to move vertically upward or down- 

ward, only one DOF out of its six DOF remains. 

The wheel has o n e - D O F  corresponding to the 

roll ing motion. Since the suspension mechanism 

connects the driven wheel to the chassis (spec- 

ifically to the axle carrier) by rubber  mountings,  

it can be simulated as five binary links connecting 

the chassis and the wheel knuckle through sphe- 

rical joints  at both ends of each link. Thus, the 

suspension mechanism consists of five links and 

ten spherical joints,  and has only o n e - D O F  (see 

Fig. I). 

2.1 Displacement analysis 
The configurat ion of the mechanism can be 

specified by defining a set of  points on the links 

and at the joints. Figure 2 presents the mechanism 

Fig. i 
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The multi link five-point suspension system 

with the assigned points. Each binary link is 

replaced by two points located at the centre of the 

spherical joints  at both ends, while the adjacent 

links are sharing common points. The whole 

mechanism is then replaced by ten points. Points 

1, '--, 5 that are located at the chassis, are known 

points. The Cartesian coordinates of the un- 

known points 6. "", 10 located on the knuckle 

define the motion variables. Therefore, 15 con- 

straint equations are needed to solve for the 15 

unknown  Cartesian coordinates.  The initial posi- 

tions, velocities, and accelerations of points I, ..., 

5 are known from the driver data. 

The constraints are either geometric or kine- 

matic constraints. Geometric constraints are dis- 

tance constraints that fix the relative positions of 

the points on a rigid link of the mechanism. The 

geometric constraint  equat ions are expressed in 

the Cartesian coordinates of the points as lbllows, 

(x6-x l )  2+ 

(xT-x2) 2+ 

( x ~ -  x3) 2 + 

( Y6-- Yl) 2+ (Z~-- zi) 2-- d~i = 0  

(y7--Y2) 2+ (ZT-Z2) 2-dZ2 = 0  

(ya-- y3) 2 + ( z s -  z3) E -  d~.3 = 0  

(X9--X4) 2-] - (Y9--Y4) 2-'~ (Zg--Z4) 2--d24 = 0  

(Xlo-Xs) 2+ , 2 2 2 _ (Y10-3.5) + (z lo-zs)  -dlo,s--O 

( X T - - X 6 )  2-'} " (yT--Y6) 2+ (.ZT--Z6)2--d72,6 ~--0 

(xs--x6) 2+ (Ys-- y6) 2+ (zs-- z~) 2-- d2,6 = 0  

(X9--X6) 2__ (Yg--Y6) 2+ (29--6)2--  d92.6:0 

(XIo -- X6) 2 + (Ylo -- 3"6) 2 + ( 21o -- 6,6) 2 __ d12o,6 = 0 

(Xs-.':7) 2+ (Y8-y7)2+ (z~-  zT) 2_ d82.7 = 0  

(X9--X7) 2 + [Yg--YT) 2+ (2,9--27) z d~7 = 0  

(Xlo- X7) 2+ (Ylo--YT) z+ (Zlo-- Z7) 2__ d20,7:0 

(m-xs) 2+ (_Vg-ys) 2+ (Zg-Z~)Z-d~.s=O 

(I.1) 

(1.2) 

(1.3) 

(1.4) 

(1.5) 

(i.6) 

(I.7) 

(i.8) 

(I .9) 

l.lO) 

I.II) 

1.12) 

,.13) 

IO 

Fig. 2 The multi-link five-point suspension with the 
assigned points 
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(xx0 -- xs) 2 q_ ( Yl0 -- Y8) z + ( z~0 -- zs) 2 _ d20,8 : 0 (1.14) 

where di.~ is the distance between points i and 

j belonging to the same rigid link, and xi, Yi, 

and zi are the Cartesian coordinates of point i. 

Kinematic constraints result from the conditions 

imposed by the kinematic joints on the relative 

motion between the bodies they comprise. Points 

located at the centre of a spherical joint or at the 

axis of a revolute joint automatically eliminate all 

the kinematic constraints due to these joints. 

Moreover, driving constraints are added to the 

above constraints as functions of the input driving 

angular position 0 (see Fig. 2) in the form, 

(z~-z,) -& , ,  cos(P) =0 (I. 15) 

Equation (I) expresses the required 15 indepen- 

dent constraint equations in terms of the Car- 

tesian coordinates of the assigned points. Given 

the set of the known coordinates of points 1, --., 

5 and the driving variable * at each instant, the 

nonlinear Eq. (1) can be solved by any iterative 

numerical method (Molian, 1968) to determine 

the 15 unknown Cartesian coordinates of points 

6 , - " ,  10. 

It should be noted that in this formulation, the 

kinematic constraints due to some common types 

of kinematic joints (e.g. revolute or spherical 

joints) can be automatically eliminated by prop- 

erly locating the assigned points. The remaining 

kinematic constraints along with the geometric 

constraints are, in general, either linear or quad- 

ratic in the Cartesian coordinates of the particles. 

Theretbre, the coefficients of their Jacobian ma- 

trix are constants or linear in the rectangular 

Cartesian coordinates. Where as in the formula- 

tion based on the relative coordinates, the con- 

straint equations are derived based on loop 

closure equations which have the disadvantage 

that they do not directly determine the positions 

of the links and points of interest which makes the 

establishment of the dynamic problem more diffi- 

cult. Also, the resulting constraint equations are 

highly nonlinear and contain complex circular 

functions. The absence of these circular functions 

in the point coordinate formulation leads to faster 

convergence and better accuracy. Furthermore, 

preprocessing the mechanism by the topological 

graph theory is not necessary as it would be the 

case with loop constraints. 

Also, in comparison with the absolute coor- 

dinates formulation, the manual work of the local 

axes attachment and local coordinates evaluation 

as well as the use of the rotational variables and 

the rotation matrices in the absolute coordinate 

formulation are not required in the point coordi- 

nate formulation. This leads to fully computerized 

analysis and accounts for a reduction in com- 

putational time and memory storage. In addition 

to that, the constraint equations take much sim- 

pler forms as compared with the absolute coor- 

dinates. 

The main kinematical properties of the suspen- 

sion are described by the coordinates of the wheel 

centre point and the kingpin angle a' and camber 

angle ~ (Adler, U.). The wheel centre point 

(point 11, see Fig. 3) is defined as the point at 

which the wheel spin axis intersects the wheel 

plane. Points 8 and 11 define the wheel spin axis. 

The coordinates of the wheel centre point can 

easily be determined by specifying its position 

relative to three other points located on the knuc- 

kle. Kingpin angle determines the steering ali- 

gning torque in conjunction with steering offset 

and wheel caster. The kingpin angle ct is defined 

as the inclination angle of a fixed line on the 

knuckle (connecting points 6 and 8) relative to 

the vertical longitudinal plane, measured in the 

transverse plane of the vehicle (Adler, U.) and 

therefore from Fig. 3; 

a ,=tan_ ~ Ys--Y~ 

z 
\ ,t 8 

Fig. 3 Kingpin and camber angles 
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A positive angle a signifies a displacement o f  

point 6 in the negative y direction. The camber  

angle ,8 is the incl inat ion of  the wheel plane 

relative to the longitudinal  vehicle plane, mea- 

sured in the transverse plane of  the vehicle and 

therefore ; 

- ( z s - z . )  
f l = t a n - 1  (Ys--YH) 

Positive camber means that the wheels are tilted 

out at the top rather than at the bottom. 

2.2 Velocity and acceleration analyses 
The velocity equat ions are derived by differen- 

tiating Eq. (1) with respect to time and take the 

form 

[ c ~ ] q = o  (2) 

Since the velocity equat ions are linear, the vector 

of  veloci t ies ;  ~1=[01, 02, " ' ,  q3o, O] r can be 

part i t ioned as ;  e l= [ t~  r, z~r] r, and the velocity 

equat ion is written in the part i t ioned matrix 

form, 

[c~]a=[c~]w (3)  

where t i =  [2~. 96, 26. ' " ,  2~o] r and gr = [2~. _gt, 21. 

"", 25, O] r are the unknown and known vectors of  

velocities, respectively and are given by. 

[C~] = 

2xsa 2y~., 2z~,1 0 0 0 

0 0 0 2x7,2 2y7,2 2z7,2 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

2xsa 2y6.7 2zca 2x7.6 2yT,s 2Z7,6 
2X6,s 2ys,s 2Z6.s 0 0 0 

2X6,9 2y6,9 2&,9 0 0 0 

2x~,lo 2Y6,19 2z~,io 0 0 0 

0 0 0 

0 0 0 

2Xs,s 228,3 22.8,3 

0 0 0 

0 0 0 

0 0 0 

2Xs,s 2ys,s 2Zs,6 

0 0 0 

0 0 0 

0 0 2xT,s 2yT,s 2zT,S 2Xs,7 2ys,7 2~,7 

0 0 2x7,9 2y7.9 2z7,9 0 0 0 

0 0 2X7,to 2y7,1o 2Zr, m 0 0 0 

0 0 

0 0 

0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

2x9.4 2y9,4 2z9,4 0 0 0 

0 0 0 2Xlo,s 2ylo,5 2Zlo,5 

0 0 0 0 0 0 

0 0 0 0 0 0 

2x9,6 2yg,s 219,6 0 0 0 

0 0 0 2X,o,s 2ym,6 2Zlo,6 

0 0 0 0 0 0 

22"9,7 2y9,7 2Z9,7 0 0 0 

0 0 0 2Xio.7 2yxo,7 2Zlo,7 

0 0 0 

2Xxo.s 2ylo,s 2Zlo.s 

0 0 0 

0 0 0 2Xs,9 2ys,9 2Zs,9 2Xg,s 2yg,s 2zg,s 

0 0 0 2Xs,,o 2ys, lo 2Zsao 0 0 0 

0 0 0 0 0 0 0 0 0 

(4) 

and 

[C.] = 

2X~,1 2y6,1 2Z6,1 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 0 0 0 0 0 0 

2XTa 2yTa 2z7,2 0 0 0 0 0 0 

0 0 0 2xs,s 2ys.s 2zs,s 0 0 0 

0 0 .  0 0 0 0 23{9,4 2y9,4 2~,4 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

2Xlo,s 2yxo,s 22:1o,8 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 - & , l  sin(0) 

( 5 )  



Kinematic Analysis of the Multi-Link Five-Point Suspension System in Point Coordinates 1137 

Similarly, the acceleration equat ion is derived by 

differentiating the velocity Eq. (2) with respect to 

time as follows, 

[Cq] q +  ([ Cq] ~1) qdl=O (6) 

Part i t ioning the vector of accelerations il into 

[fir Wr] where ff and ",# are the vectors of 

unknown  and known accelerations respectively. 

the acceleration equat ion is expressed as. 

[C,]u=[cw]w-([G]q)~q=o (7) 

where the two submatrices [Cu] and [Cw] are 

defined by Eqs. (4) and (5) respectively and the 

square velocity term ([Cq]¢l)olSl is expressed as 

follows, 

2d'~., + 25,g,t + 2~. ,  
2372.2 + 2 Q27.2 + 2~7.2 

2XZ,s + 29z,3 + 22~8,s 

2:eL + 2_9L + 2&, 
2,~ ~o.s + 2920.5 + 22tZo,5 

2./'6Z.s + 2_9~,s + 2~,s 

[ C ' q ] q =  22~,9 q- 233~,9 q- 2 J2'~6,9 (8) 
• 2 3 . 2  - 2xs. to+-Y6ao+2~ao 

222.8+2 92 s + 2 ~ , s  

2.¢~,9 + 23",72.9 + 2~.9 

2~,o  + 2y-Lo + 2&,0 
222,9+ 2 9~,9 + 2k~8,9 

2 v-2 - - 2  "2 --9"2 
. t  8.10 ~ -  V8 , t0  ~ -  ~ 8 , 1 0  

&,, COS (0) t~ ~ 

Regardless of the order of nonl inear i ty  of the 

constraint  Eq. (1), the velocity and acceleration 

equations are linear in terms of dl and i~., respec- 

tively. If the position analysis has been for- 

mulated correctly, then the matrix [C,~] is of  a 

sufficient rank and becomes nonsingular .  There- 

fore, the velocities and accelerations of the un- 

known points can be easily determined by solving 

both the linear Eqs. (3) and (7) using any nu- 

merical method. The velocities and accelerations 

of other points of interest can also be calculated if 

their positions are specified. The angular  velocity 

and acceleration of any link in the mechanism, 

can be evaluated from the Cartesian coordinates, 

velocities, and accelerations of any three defined 

points on the link and are respectively given as, 

(13 = V j r i X V k - ' i  (9) 
v . i , i ' r k ,  i 

^ ^ 
ad ,  i x a k , i  a =  x (10) 
aj, i'rk,i 

where ~t~,i=a~,i-- wx ( w x r g .  

2.3 Resul t s  of  the s imulation 

The chassis is assumed to be stationary and 

therefore the values of the velocities and acc- 

elerations of all known points (points I, " ' ,  5) 

fixed on it are identically zero. The Cartesian 

coordinates of the known points are listed in 

Table  1. The driving variable 0 is taken as func- 

tion of time in the form, 0 ( t ) = 0 . 7 + 0 . 5 ¢ +  

0.125¢ z. The nonl inear  equat ions of constraints 

(1) are solved by Newton-Raphson ' s  method of 

successive approximat ion to determine the Car- 

tesian coordinates of the unknown  points for 

different time steps. Also, the Cartesian coor- 

dinates of the wheel centre (point 11) are esti- 

mated. Since the position analysis is a nonl inear  

problem which is solved by an iterative numerical  

method, it is expected that the problem of multi- 

ple solutions arrises. In order to avoid such 

problem, knowing the input driving variables, 

measurements can be used initially to obta in  a 

good initial guess at the starting point of the 

position analysis. In the subsequent iterations, the 

problem of mult iple solution can be overcome 

taking as a good initial guess the previous con- 

figuration of the system. The velocity and accel- 

e ,at ion equat ions are solved using the L U facto- 

rization with pivoting method. Table  2 presents 

some results of  the kinematic analysis for two 

seconds of s imulat ion as a result of changing the 

drivel" angle with time. Table  2 indicates also the 

initial guess for the coordinates of the unknown  

points. Table  3 presents the angular  velocity and 

angular  acceleration of the knuckle at various 

Table I Cartesizn coordinates (m) of the known 
points 

Point 1 Point 2 

X -1.396 --1.301 

Y --0.025 0.1168 

Z --0.082 0.106 

Point 3 Point 4 Point 5 

- 1.0941 --0.9838 - 1.095 

0.1987 0.2609 0.183 

0.090 0.0501 --0.0158 
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Table 2 Cartesian coordinates (m) of  the unknown  points 

Time 
0.00 

(sec.l 

Point 0 40.1 

X --1.196 

6 Y --0.181 

Z 0.259 

X --1.114 

7 Y --0.013 

Z 0.299 

X --1.107 

8 Y --0.010 

Z 0.221 

X -- 1.205 

9 Y 0.183 

Z 0.161 

X -- 1.028 

10 Y 0.094 

Z 0.276 

T a b l e  3 

0.25 0.50 0.75 1.00 1.25 1.50 1.75 

47.72 56.22 65.62 75.92 87.11 99.19 112.17 

--1.231 --1.261 --1.292 --I .315 --1.324 --1.316 --1.284 

0.261 0.320 0.367 0.400 0.415 0.408 0.372 

0.218 0.166 0.102 0.027 --0.059 --0.153 --0.250 

--I .158 --1.212 --1.262 --1.302 --1.327 --1.336 --1.319 

0.126 0245 0.330 0.383 0.410 0.409 0.377 

0.368 0.361 0.311 0.240 0.155 0.060 --0.039 

--1.144 --1.193 --1.238 --1.270 --1.287 --1.285 --1.255 

--0.084 --0.183 0.263 0.315 0.345 0.350 0.332 

0.303 0.316 0.281 0.218 0.140 0.051 --0.042 

--I .232 --1.256 --I .278 --I .292 --1.290 --1.268 --1.215 

0.206 0.240 0.279 0.309 0.325 0.34 0.302 

1.136 0.108 0.060 --0.005 --0.084 --0.172 --0.261 

--I .067 --1.109 --I .153 --1.188 --I .212 --1.223 --I .219 

0.202 0.290 0.364 0.418 0.453 0.467 0.458 

0.294 0.277 0.232 0.167 0.089 0.001 I --0.094 
i 

I 

Angular  velocity 

1.95 

123.20 

-- 1.223 

0.305 

--0.326 

-- 1.267 

0.313 

--0.116 

--1.190 

0.299 

--0.114 

--1.130 

0.271 

--0.329 

-- 1.209 

0.424 

--0.178 

(rad/s)  and acceleration ( rad /s  2) of  the knuckle 

Initial 

guess 

-- 1.309 

0.412 

--0.086 

-- 1.225 

0.405 

0.111 

- -  1.164 

0.435 

0.070 

- 1.231 

0.532 

--0.145 

--1.137 

0.489 

--0.058 

Time (sec.) 0.00 

~x -- 3.47 

O)y --0.36 

wz 0.43 

ax 18.7 

ay 1.41 

Cez --7.74 

0.25 0.50 0.75 1.00 1.25 1.5 

--1.83 --1.02 --0.51 --0.27 --0.17 --0.15 

--0.43 --0.47 --0.38 --0.32 --0.30 --0.30 

--0.17 0.01 0.22 0.34 0.48 0.74 

3.55 2.78 1.37 0.62 0.24 --0.11 
! 

--0.61 0.27 0.35 0.12 0.01 0.02 

--0.21 1.09 0.58 0.48 0.74 1.43 

0 . 5  

E l l  

0 . 4  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

0 . 3  

0 . 2  

0 . 1  

7 \ 

/ i  - ........ 

0 0.5 1 1.5 2 
T ime  

Fig. 4 Time (s) variation of  zu (m) 

2 . 5  

1.75 ] 1.95 

--0.27 --1.14 

--0.27 0.33 

1.35 4.46 

-- 1 . 0 7  --20.8 

0.36 20.6 

4.19 77.6 

,°°[ 
80 [ . . . . . . . . .  

6O 

40 

20 

0 

-20 

-40 

-60 

-80 

F i g .  5 

i f 

O 0.5 1 1.5 2 2.5 
Time 

k ingpin angle ~ - -  camber  angle 

Time (s) variation of  the kingpin and camber 

angles (Deg) 
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time levels. Figure 4 presents the time variation of 

the z-coordinate  of the wheel centre. Figure 5 

shows the variation of the kingpin angle * and 

the camber angle * with time. It should be noted 

that the results of the simulation are tested and 

compared with the simulation results based on the 

absolute coordinates. This comparison proves the 

validity of the proposed method. 

3. Conclusions  

In this paper, an efficient algorithm for the 

numerical kinematic analysis of the spatial motor-  

vehicle mult i- l ink five-point suspension mec- 

hanism is presented. The kinematic analysis is 

carried out in terms of the rectangular Cartesian 

coordinates of some defined points in the links 

and at the kinematic joints. The suggested algo- 

rithm eliminates the need to write redundant 

constraints and allows solving a reduced system 

of equations. The algorithm can be used to solve 

the initial position as well as the finite displace- 

ment problems. The results of the analysis in- 

dicate the simplicity and generality of the pro- 

posed algorithm. 
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